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An inequality for sums of dyads and tensors*
John de Pillis
University of California, Riverside 92502
University of California, Santa Cruz 95064

ABSTRACT: Given a finite rank transformation R on
Hilbert space with dyadic sum decomposition

2(\11: vy) = R,
then it is shown that
2'rank( R )¢r(U )+r(V) ¢ rank( R ) + N,

where r( U ) = dim(span(ul,uz,...un)) and
r(V) = dim(span(vl,vz,...vu)).

Applications to sums of decomposable Kronecker products
and to summs of dyads are presented.

AMS (MOS) Primary classification 1500, 15A69
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Introduction, In previous works, relations between dyadic

and Kronecker products of vectors (definitions follow) are
explored, cf. [2]), [3]). In fact, consider the general situation
where finite rank linear transformation R on infinite-dimensional
Hilbert space, H, is the sum of dyadic products. If the number
of terms of this sum is known, then these dyadic terms can be
fairly well characterized [3, Thm. 3.2). 1In this paper, we
consider dyadic sum decompositions for R where N, the number of
terms, is not known a priori, and present a sharp inequality
which ties together

(1) the rank of R,

(11) the ranks (dimension of the spans) of the dyad component
vectors, and

(111) N, the number of distinct dyads which sum to R.

This inequality proves useful for establishing necessary condi-
tions for certain special questions, e.g., when do N dyads sum
to a single Kronecker product, or when do N dyads sum to
(another) dyad? These questions, in turn, relate to the com-
plexity question in the computation of matrix products, cf.,
(4], (1].

2. Definitions and Preliminaries. L(H,K) denotes all bounded
linear transformations from Hilbert space H to Hilbert space K.

Among the elements of L(H,K) are the dyads (rank one transforma-
tions) (x x y) defined for each y € H, x € K by requiring that
for all z € H, (x x y):z #» (z,y)x, where ( , ) is the inmner
product on H., We proceed to give the Kronecker or tensor product
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A @ B: First, for A € L(H,K), A*, the gdioint of A, is that
element of L(K,H) given by (Ay,x) = (y,Ax) for all y € H, x € K.
As an example, (x x y)* = (y x x) for all dyads. J denotes the
Hilbert space of linear functionals on H. That is, for x € H,
X €0 1is defined by x:y » (y,x) for all y € H. This leads to
the definition of QF € L(K,H) where A € L(H,K). In fact, for
all x € H, ¥ € K, we define A" ) (x) = Y(A(x)). Finally, for
any A € L(H,K), B € L(H2,K2) we deine the Kropecker (or tepsor)
product 4 ® B® by A ® B®:C + ACB for all C € L(K,,H,).

We will use gk(R) to denote the rank of & txapsformation R,
i.e., rk(R) is the dimension of the range of R. Also, if

U= (xl,xz,...,xN} C H, then we will use g(U) to denote the
rapk of the set U, i.e., r(U) is the dimension of gpap (U), the

linear span of the set U,
Before arriving at our inequality, we will be using the

following characterization of dyadic sums:

Theorem 2.1 ([§, Th. 3.2]). Given finite-rank linear transforma-

tion R € L(H,K) and the set U = [ul,uz,...,un,...,unl € K where
the range of R is a subspace of span (U). Assume (by re-ordering
if necessary) that the first n < N elements of U form a basis

for span (U) (i.e., n = r(U), the rank of U). Accordingly the
N-n 2 0 remaining vectors U1 2Un420 ¢ o oYy define N-n scalars
(a):4 = 1,2,...,n, § = 041, n42,...,N) by the equations

uy = 2 a Py , 3 =041, m42,...,N,
{i=

]




Then for N-n arbitrary vectors [vn+1’vn+2""’VN} C H we have

the representation

N
2 (4 xvy) =R (2.1)
1-

if and only if each "earlier" v, is given by

N
v, = R¥(Q) - Z Ej_(j)vj, 1=1,2,...,00c(V), (2.2)
j=n+l
where [ﬂl,ﬂz,...,ﬂh] € span (U) is the unique biorthonormal
complement to {“1’“2""'un] in span (U) (i.e., (°1’“3> = 613,
the Kronecker delta). The summation in (2.2) is taken to be

zero In case n = N,

3. The Inequality
Theorem 3.1. Given finite-rank linear transformation R € L(H,K)

and sets of vectors U = [u1,u2,.a.,unl CK, V= [vl,vz,...,vN] CH

such that
N
Dy xv) =R (3.1)
i=1
Then
2°tk(R) = r(U) + r(V) = rk(R) + N , (3.2)

R .




where rk(R) = dimension (range of R), and
r(U) = dimension (span (U))
r(V) = dimension (span (V)).

Proof: By re-ordering the terms of sum (3.1) if necessary, we
will assume that the first n = r(U) elements, Upslp,eee,Uy of
U, form a basis for span (U). Thus, the ordered set V lends

itself to characterization (2.2), 1In fact,
r(V) = rank(span(vl,vz,...,vn,vn+1,...,vN)) " (3.3)

N
where v, = R¥(8,) - Zai(j)vj, {=1,2,...n (from (2.2)).
fr—1

Equivalently,

r(V) = rank(span(k*(ﬁl),R*(ﬁz),...,R*(ﬁn),vn+1,...,vN)) (3.4)
The equivalence of (3.3) and (3.4) follows by observing that
each of the N vectors in (3.4) belongs to the linear span of
the N vectors in (3.3), and vice versa. From (3.4) we now

obtain

r(V) = rlnk(span(R*(ﬂl),...,R*(Oh)))+rlnk(span(vn+1,...,vN))
< rk(R*) + N - n (3.5)
= rk(R) + N - r(U) ,




which gives us the right-hand side of inequality (3.2). Obtain-
ing the left-hand side of (3.2) is immediate, since from (3.1)
we deduce that span (U) > range R, while span (V) O range R*
(recall (uy x vi)* = (vy x “i))' Thus, r(#) = rk(R) and

r(V) 2 rk(R*) = rk(R) implying

2°rk(R) = r(U) + r (V). (3.6)

Finally, (3.5) with (3.6) establishes (3.2) and the proof is
cdone. @

18 the ipequality sharp? The left side of (3.2) yields
equality whenever the entire N-element sets U and V are linearly
independent (i.e., when n = N = rk(R)). In following the proof
of the right-hand inequality for (3.2), we observe the two
inequalities in (3.5). The first inequality yields equality if
and only if

lpan(k*(ﬁl),k*(ﬁz),...,R*(ﬂn))ﬂspan(vn+1,vn+2,...,vN) = (0}.

That is, by choosing each of the N-n arbitrary vectors Vadls e osVy
in H outside the range of R*., The second inequality of (3.5)
becomes equality if and only if the N-n element set

{vn+1,vn+2,...,vul is linearly independent.

'I 4. Final Remarks. In (3, Th. 4.2, 4.3], it is shown that




E 3“1 X v4) =R if and only if Bui v,) = R' (4.1)

where the passage from R to R! is a well-defined linear relation-
ship. This provides a dual form to (3.2) with tensor products
replacing the dyads of (3.1) and this R' replacing R. As an
easy special case, let us use (3.2) and dyad-tensor duality to
justify the following statements for non-zero Uis Vis Xy Yy € N,
1t=1, 2, 3.

Proposition. Suppose

(“1 X vi) + (u2 X vz) = (u3 X v3) , and (4.2a)
(%) ® u;) + (x; ®y,) = (xq ® y3) . (4.2b)

Then all the ui's or else all the vi's are non-zero scalar
multiples of each other. Similarly, all the xi's or else all

the y,'s are scalar multiples of each other.
Proof. The proof of this assertion will not appeal to the

definitions of the dyad (ui X vi)_or of the tensor (xi ® yi),
since inequality (3.2) applies. 1In fact, write (4.2a) as

(“1 X vq) + (ug x vp) - (ug x v3) =0 (L.e., N=3, R =0) (4.2a')
from which we obtain via (3.2) that

20 = r([ulalz.ua}) + r([vl,vz,vsl) <0+ 3, (4.3)




i s

Since we have assumed no u; or vy is zero, the ranks

r(u), r(v) 2 1. At the same time, the upper bound of 3 given
by (4.3) assures us that both r(u) = 2 and r(v) = 2 can not
happen, i.e., at least one of the terms r(u), r(v) in (4.3)
equals one, or all the ui's or all the vi's are scalar
multiples of each other. By our duality result, (4.1), (4.2a')
is equivalent to

(u) ®vy) + (4 ®vy) - (u3 ®vy) =0,

and the same conclusion obtains, i.e., in (4.2b), either
r([xl,xz,x3]) or r({yl,yz,y3]) equals one, or all the xi's or
all the yi's are scalar multiples of each other if (4.2b)

is given.
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